Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Food Environ Virol ; 15(1): 61-70, 2023 03.
Article in English | MEDLINE | ID: covidwho-2175158

ABSTRACT

The performance of dishwashers in removing live viruses is an important informative value in practical applications. Since foodborne viruses are present in contaminated food surfaces and water environments. Insufficient washing of dishes typically makes a carrier of foodborne viruses. Dishwashers have shown excellent performance in removing bacterial pathogens, but very limited reports related to eliminate foodborne viruses on contaminated dish surfaces. Here, murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and human coronavirus 229E (HCoV-229E) were experimentally inoculated on the dish surfaces (plate, rice bowl, and soup bowl). Plaque assay, 50% tissue culture infectious dose (TCID50), and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to determine their removal efficiency of them through the general wash program of household dishwashers. Using titration assay, MNV-1 and HAV were reduced by 7.44 and 6.57 log10 PFU/dish, and HCoV-229E was reduced by 6.43 log10 TCID50/dish through the general wash program, achieving a ≥ 99.999% reduction, respectively. Additionally, RT-qPCR results revealed that viral RNA of MNV-1 and HCoV-229E reduced 5.02 and 4.54 log10 genome copies/dish; in contrast, HAV was not detected on any dish surfaces. This study confirmed the performance of household dishwashers in removing pathogenic live viruses through the general wash program. However, residual viral RNA was not sufficiently removed. Further studies are needed to determine whether the viral RNA can be sufficiently removed using combination programs in household dishwashers.


Subject(s)
Coronavirus 229E, Human , Hepatitis A virus , Norovirus , Viruses , Humans , Animals , Mice , Norovirus/genetics , Hepatitis A virus/genetics
2.
iScience ; 25(12): 105640, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2120448

ABSTRACT

Risk-assessing and controlling virus transmission from soil-rich post-washing water (PWW) are crucial during harvesting raw vegetables. However, viruses are normally difficult to concentrate because of their low concentrations and complex backgrounds. Here, ultrafiltration (UF), virus adsorption-elution (VIRADEL), and optimized paper filtration-coupled ultrafiltration (PFC-UF) methods were employed to evaluate the recovery of non-enveloped murine norovirus (MNV-1), hepatitis A virus (HAV), and enveloped human coronavirus 229E (HCoV-229E) from soil-rich PWW. Among the three methods, PFC-UF outperformed the other methods in the recovery of viruses from PWW with soil content. Under the highest soil condition with virus seeded at a titer of 102 plaque-forming unit (PFU) or TCID50, the PFC-UF method exhibited an exceedingly consistent recovery rate of 78.8 ± 13.3 (MNV-1) and 44.4 ± 25.2% (HAV). However, the recovery of enveloped HCoV-229E was inferior to non-enveloped viruses. Overall, PFC-UF provided a reliable method for recovering viruses in soil-rich PWW.

3.
Food Microbiol ; 110: 104164, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2068988

ABSTRACT

Since the first SARS-CoV-2 outbreak in Wuhan, China, there has been continued concern over the link between SARS-CoV-2 transmission and food. However, there are few studies on the viability and removal of SARS-CoV-2 contaminating food. This study aimed to evaluate the viability of SARS-CoV-2 on food matrices, depending on storage temperature, and inactivate the virus contaminating food using disinfectants. Two SARS-CoV-2 strains (L and S types) were used to contaminate lettuce, chicken, and salmon, which were then stored at 20,4 and -40 °C. The half-life of SARS-CoV-2 at 20 °C was 3-7 h but increased to 24-46 h at 4 °C and exceeded 100 h at -40 °C. SARS-CoV-2 persisted longer on chicken or salmon than on lettuce. Treatment with 70% ethanol for 1 min inactivated 3.25 log reduction of SARS-CoV-2 inoculated on lettuce but not on chicken and salmon. ClO2 inactivated up to 2 log reduction of SARS-CoV-2 on foods. Peracetic acid was able to eliminate SARS-CoV-2 from all foods. The virucidal effect of all disinfectants used in this study did not differ between the two SARS-CoV-2 strains; therefore, they could also be effective against other SARS-CoV-2 variants. This study demonstrated that the viability of SARS-CoV-2 can be extended at 4 and -40 °C and peracetic acid can inactivate SARS-CoV-2 on food matrices.


Subject(s)
COVID-19 , Disinfectants , Animals , Peracetic Acid/pharmacology , Salmon , SARS-CoV-2 , Lettuce , Chickens , Ethanol , Seafood , Disinfectants/pharmacology
4.
Food Control ; 143: 109306, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-1983072

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 269 million people and killed more than 5.3 million people worldwide. Although fomite transmission of SARS-CoV-2 has been continuously reported, few studies have been conducted on food contact surfaces. Therefore, this study aimed to investigate the viability of coronaviruses on food contact surfaces and to remove SARS-CoV-2 contaminated on food contact surfaces with disinfectants. At 20 °C, SARS-CoV-2 was inactivated within 48 h on all food contact surfaces. At 4 °C, it was inactivated at 48 h on kraft paper and 96 h on parchment paper, but it was viable up to 5 days in low-density polyethylene (LDPE). At -20 °C, SARS-CoV-2 did not decrease by even 1 log on all food contact surfaces until 5 days. Treatment with 70% ethanol or 1000 ppm sodium hypochlorite for 5 min was sufficient to completely remove SARS-CoV-2 from 6 food contact surfaces. Similarly, UV-C irradiation at 60 mJ/cm2 eliminated SARS-CoV-2 contaminated on food contact surfaces. Also, the wiping test showed that even wiping an area contaminated with SARS-CoV-2 with a cloth moistened with 70% ethanol or 1000 ppm sodium hypochlorite, it took 5 min to inactivate the virus. Our findings suggested that SARS-CoV-2 contaminated on food contact surfaces in local retail may be viable enough to be transported home. However, if the type and method of use of the disinfectant suggested in this study are followed, it is possible to sufficiently control the fomite transmission of SARS-CoV-2 through food contact surfaces at home.

SELECTION OF CITATIONS
SEARCH DETAIL